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Abstract 

Diabetes mellitus (DM) is one of the leading causes of death. It is associated with cardiovascular 
diseases and impaired endothelial function, which is critical for cardiovascular health. Endothelial cells 
in blood vessels release endothelium-derived factors (EDFs) which include endothelium-derived 
relaxing factors (EDRFs) like prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing 
factor (EDHF), which relax blood vessels, and endothelium contracting factors (EDCFs) like angiotensin 
II, endothelin I and thromboxane A2, which cause contractions. Diabetes impairs endothelium-
dependent relaxation, largely mediated by NO. Several studies have demonstrated that NO acts as a 
vasodilator which is essential in mediating endothelium-dependent relaxation. Diabetes treatments 
today are largely centered on reducing blood sugar levels. However, it is important to understand that 
endothelial dysfunction (ED) begins as soon as diabetes is diagnosed. This dysfunction is an early 
warning sign of atherosclerosis, which progresses to cardiovascular disease. This review provides 
insights into NO and endothelial dysfunction mechanisms, aiding the development of current and future 
treatments. 
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INTRODUCTION 
 

Diabetes mellitus (DM) is rapidly emerging as a 
significant global health concern, contributing to 
a substantial number of deaths. The worldwide 
prevalence of DM has surged, nearly doubling 
from 4.7 % reported in 1980 to 8.5 % cases in 
2014 and is projected to reach 12.2 % by 2045 
[1]. Also, DM leads to complications in both micro 
and macro vessels. Microvascular damage may 

result in diabetic retinopathy, neuropathy and 
nephropathy, while macrovascular damage leads 
to cardiovascular diseases (CVD), peripheral 
vascular disease and stroke. Risk of death from 
CVD causes is 2 – 6 times greater for those with 
diabetes [2]. Cardiovascular disease is typically 
caused by a condition called atherosclerosis, 
which involves narrowing and hardening of the 
blood vessels. Endothelial cells within blood 
vessels are essential for controlling blood flow to 
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ensure vascular health. These cells release 
vasoactive substances, containing endothelium-
derived relaxing factors (EDRFs) and 
endothelium-derived contracting factors 
(EDCFs), which control constriction and dilation 
of vessels. Nitric oxide (NO), prostacyclin (PGI2) 
and endothelium-derived hyperpolarizing factor 
(EDHF) are examples of EDRFs and they 
promote vessel relaxation, while EDCFs are 
responsible for causing vessel contraction. 
Endothelial dysfunction (ED), recognized as an 
early marker of atherosclerosis, occurs when 
there is an imbalance in vasoactive substances 
due to damage to the endothelium. This leads to 
decreased EDRF secretion and increased EDCF 
production. Diabetic patients have been found to 
have impaired vasodilation in micro and 
microcirculation [3]. Studies have shown that a 
decrease in NO bioavailability leads to 
decreased impairment in NO-mediated relaxation 
[4]. Nitric oxide is known to mediate relaxation in 
large arteries, while EDHF predominantly affects 
small arteries [5]. This review examines the role 
of nitric oxide (NO) as the primary source of 
vasodilation, offering insights into the mechanism 
of erectile dysfunction (ED) and development of 
current and future treatments. 
 
Endothelium-derived relaxing factors (EDRF) 
 
Nitric oxide (NO) 
 
Nitric oxide has antiatherogenic properties as 
well as control over endothelium-dependent 

vasodilation. Reduced vasodilation in large 
conduit vessels is often associated with defects 
in NO production or activity, typically resulting 
from damage to endothelial cells. In intact blood 
vessels, NO counteracts the effects of EDCF, but 
endothelial cell injury leads to vasoconstriction. 
Diminished NO levels contribute to development 
of atherosclerosis and progression toward CVD 
(Figure 1). 
 
Endothelial cells continuously produce NO due to 
their short half-life which is generated from 
oxidation of L-arginine, along with a by-product 
called L-citrulline. Its synthesis requires several 
cofactors, including NADPH, flavin 
mononucleotide, flavin adenine dinucleotide and 
tetrahydrobiopterin (BH4) [6]. 
 
Mechanism action of NO 
 
Endothelial nitric oxide synthase (eNOS) 
mediates blood vessel relaxation in intact blood 
vessels. Chemical (acetylcholine, bradykinin, 
etc.) and physical stimuli (shear stress such as 
reactive hyperemia, laminal stress and pulsatile 
shear stress) increase calcium levels, triggering 
eNOS activity and NO release [7]. When NO is 
produced, it circulates to nearby vascular smooth 
muscle cells (VSMC) and triggers guanylyl 
cyclase (GC) activation, which converts GTP to 
cGMP [7]. In turn, cGMP causes protein kinase 
G (PKG) to activate myosin light chain (MLC) 
phosphatase, preventing vasoconstriction and 
promoting vasodilation. 

 

 
 
Figure 1: Effect of reduced NO bioavailability in vessels of damaged vessel. In healthy blood vessels, 
endothelium-derived relaxation factor (EDRF) mediates relaxation of blood vessels. However, in damaged 
vessels, EDRF formation is hampered by a progressive increase in endothelium contracting factor (EDCF). This 
imbalance, particularly decrease in NO production, leads to endothelial dysfunction, increased platelet 
aggregation, continuous smooth muscle cell proliferation and migration, increased leukocyte adhesion and 
elevated oxidative stress contributing to atherosclerosis 
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In VSMC, cGMP induces PKG to activate myosin 
light chain phosphatase, which prevents MLC 
from binding to actin, thereby preventing 
vasoconstriction and promoting vasodilation [8]. 
Also, PKG opens large conductance calcium-
activated potassium channels (BKCa channel), 
which results in hyperpolarization of cell 
membrane and closure of voltage-dependent 
Ca2+ channels. This causes a decrease in 
intracellular Ca2+ concentration, leading to 
relaxation [9]. Protein kinase G further promotes 
vasorelaxation by phosphorylating both inositol 
triphosphate receptor (IP3R) and IP3R-
associated PKG-I substrate (IRAG), inhibiting 
calcium release from endoplasmic reticulum [10]. 
A cGMP-dependent protein kinase activation 
usually causes NO-mediated relaxation, but NO 
directly activates sarcoendoplasmic 
reticulum calcium ATPase (SERCA), leading to 
the removal of Ca2+ from smooth muscle cytosol 
into the sarcoplasmic reticulum (Figure 2).  
Additionally, cGMP lessens Ca2+ release from 
the sarcoplasmic reticulum and aids in restoring 
Ca2+ to the sarcoplasmic reticulum [11]. 
 
Impairment in NO-mediated relaxation in 
diabetes 
 
Reactive oxide generation 
 
Studies have shown that a decrease in NO 
insufficiency contributes to impairment of NO-
mediated relaxation in both human [4] and 

experimental settings [12]. Endothelial nitric 
oxide synthase typically generates NO which 
promotes vasodilation. However, in some 
diseases, the synthesis of eNOS is impaired, 
leading to a lack of NO production. Studies have 
shown that eNOS activity may increase in these 
cases, but instead of producing NO, it generates 
superoxide, a phenomenon referred to as eNOS 
uncoupling [13]. In diabetes, the impairment of 
NO-mediated relaxation is caused by various 
factors. Hyperglycemia in diabetes results in the 
production of reactive oxygen species (ROS) 
including hydroxyl radical (OH), superoxide anion 
(O2

−), H2O2, lipid peroxides and hypochlorous 
acid (HClO). The increased levels of ROS disrupt 
the balance between vasodilators and 
vasoconstrictors. 
 
The enzyme, NADPH oxidase (NOX) and 
mitochondrial electron transport chain (mETC) 
pathway are other sources of ROS that lead to 
atherosclerosis [14]. NOX triggers eNOS 
uncoupling, xanthine oxidase activity and 
mitochondrial enzymes to produce more ROS 
[15]. Upregulation in NADPH oxidase activity has 
been noticed in coronary and peripheral arteries 
of coronary artery disease patients [16] 
suggesting that NOX activation contributes to 
CVD development. There are five isoforms of 
NOX (NOX1, NOX2, NOX3, NOX4 and NOX5) 
are expressed in VSMC whereas NOX2 and 
NOX4 are found in the endothelium. 

 

 
 
Figure 2: Diagram showing how NO causes blood vessel relaxation. Endothelial cells, when activated by shear 
stress or ACh, increase intracellular Ca2+, triggering NO production from L-arginine by eNOS. NO diffuses to 
vascular smooth muscle, activating sGC to convert GTP to cGMP. This activates PKG, leading to relaxation 
through a) activating myosin phosphatase to prevent myosin-actin binding; b) phosphorylating BKCa channels to 
hyperpolarize smooth muscle cells and close L-type Ca2+ channels, reducing Ca2+ influx; and c) phosphorylating 
IRAG to reduce Ca2+ release from SERCA into VSMC cytosol. NO directly targets the SERCA to promote the 

removal of Ca²⁺ from smooth muscle cell 
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Among these isoforms, NOX4 releases hydrogen 
peroxide (H2O2), exhibiting atheroprotective 
effects by preventing peroxynitrite generation 
[17]. The release of H2O2 by NOX4 lowers VSMC 
proliferation, prevents vascular remodeling and 
inflammation and maintains eNOS under 
vascular stress [18]. Although NOX4 has a 
protective role, it has demonstrated detrimental 
effects on vascular health in several animal 
models depending on the NOX enzyme 
expressed-cell type, amounts of the released 
compound and its subcellular location [14]. 
 
Use of NADPH inhibitors such as apocynin, 
salvianic acid A, GKT136901, GKT137831, 
tempol and gp91dstat was shown to slow down 
atherosclerosis progression [14]. Angiotensin 
receptor inhibitors and statins used to treat 
human disorders are shown to inhibit NOX 
activity both physiologically and pathologically 
[14]. It has also been shown that dietary nitrate 
significantly boosts the production of vascular 
NO mainly by inhibiting vascular NOX and 
oxidative stress in ApoE−/− mice [19]. 
 
Another source of ROS is xanthine oxidase, 
which triggers oxidation of hypoxanthine and 
xanthine to produce superoxide anion and H2O2 
[20]. Treatment with allopurinol decreases 
oxidative stress and improves endothelial 
function [21]. Reactive oxygen species may also 
be generated by the mitochondrial respiratory 
electron transport chain (ETC), another 
significant source of harmful ROS, leading to 
complications such as atherosclerosis and 
coronary heart disease [22]. Mitochondria are 
central organelles responsible for producing ATP 
through cellular respiration. High blood glucose 
environment causes impairment in electron 
transport chain resulting in proton leakage which 
leads to excessive ROS production [23]. 
 
To correct mitochondrial dysfunction and 
suppress atherosclerosis progression, a few 
therapeutic interventions are used which include 
antioxidants and mitochondrial inhibitors. Use of 
antioxidants derived from plants such as 
resveratrol, salidroside, ilexgenin A, berberine, 
quercetin, vitexin, baicalin and crocin are found 
to inhibit ROS production in mitochondrial cells 
and thus prevent the occurrence of 
atherosclerosis [24]. Various therapeutic 
mitochondrial inhibitors have been synthesized to 
correct mitochondrial dysfunction, including mito-
TEMPO, mitochondrial fusion (M-hydrazone) and 
fission (MDIVI-1 and P110) [24]. Coenzyme Q10, 
a component of mitochondrial respiratory chain, 
improves mitochondrial function by reducing 
oxidative stress. Pioglitazone and rosuvastatin, 
commonly used anti-diabetic and 

antihyperlipidemic drugs, respectively, ameliorate 
atherosclerosis by inhibiting mitochondrial ROS 
activation [24]. 
 
Role of nitrite and nitroxyl (HNO) 
 
Besides eNOS, NO is also produced from nitrite 
and dietary nitrate. A recent study involving both 
humans and mice has shown that supplementing 
aging individuals with inorganic nitrite improves 
endothelial function by increasing NO, 
decreasing mitochondrial ROS/oxidative stress 
and increasing mitochondrial stress resistance 
[25]. Similarly, a reduced form of NO called 
nitroxyl (HNO) regulates endothelium-dependent 
relaxation [26,27]. However multiple studies 
showed that endothelium-dependent relaxation 
by HNO was preserved or enhanced in diabetes 
and not susceptible to superoxide anions (·O2

-) 
[26,28]. This preserved vasodilation of HNO 
could be due to lack of reactivity of HNO with •O2 
to form ONOO [26,29]. Studies also showed that 
HNO directly inhibits vascular NADPH oxidase, 
which is responsible for superoxide production 
[30]. Some studies reported that HNO is a by-
product of eNOS produced when L-arginine is 
converted to NO. It has also been suggested that 
eNOS produces HNO in higher quantities than 
NO due to eNOS uncoupling and 
tetrahydrobiopterin (BH4) deficiency [31,32]. This 
unique property of HNO, which resists oxidative 
stress, may be explored as a potential 
therapeutic strategy for treating vascular 
dysfunction. 
 
Role of endoplasmic reticulum stress 
 
Apart from ROS, endoplasmic reticulum (ER) 
stress causes macro- and microvascular 
complications in diabetes. In hyperglycemia, ER 
equilibrium is interrupted leading to misfolding or 
unfolding of proteins and therefore causing ER 
stress. In response to ER stress, the unfolded 
protein response (UPR) signaling network is 
triggered to fix normal ER function. This leads to 
the upregulation of chaperone expression, which 
assists in folding ER proteins.  However, this 
signaling network may become harmful by 
triggering inflammatory responses and increasing 
reactive oxidative stress [33,34]. Additionally, it 
affects endothelial function by downregulating 
eNOS, which also affects NO production [34]. 
 
In animal studies, impairment in endothelium-
dependent relaxation was evident with the use of 
ER stress inducer, tunicamycin [35]. In addition, 
use of an ER inhibitor, tauro-ursodeoxycholic 
acid (TUDCA) was seen to improve vascular 
function, associated with normalization of 
myogenic response in spontaneously 
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hypertensive rats [35] and type 2 diabetic rats 
[36]. Combination treatment of TUDCA and 3′,4′-
dihydroxyflavonole (DiOHF) were seen to restore 
endothelium-dependent relaxation and 
expression of eNOS, which was impaired with 
TUDCA treatment [37]. 
 
Another drug, metformin, was also found to 
reduce ER stress in angiotensin II (Ang II)-
induced hypertension. In this study, mice infused 
with angiotensin II showed a rise in blood 
pressure related to enhanced vascular ER stress 
markers. Metformin acts as a potent activator of 
AMPK that reduces ER stress and therefore 
preserves vascular function in hypertension [38]. 
 
Role of asymmetric dimethylarginine (ADMA) 
and advanced glycation end products (AGEs) 
 
Elevated blood sugar levels increase the 
production of asymmetric dimethylarginine 
(ADMA), which is known to inhibit eNOS, and 
lead to endothelial dysfunction (ED). This 
inhibition makes the ratio of arginine to ADMA a 
key indicator of NO availability and the risk of 
atherosclerotic plaque formation [39]. Increased 
ADMA also elevates oxidative stress possibly 
caused by reduced activity of dimethylarginine 
dimethylaminohydrolase (DDAH), the enzyme 
that breaks down ADMA [40]. Nitrosylation of 
DDAH enzymes due to increased nitrosative 
stress further increases ADMA concentration 
[41]. Production of advanced glycation end 
products (AGEs) is amplified in diabetes, which 
correlates with NO insufficiency [42]. They bind 
their respective receptors (RAGE), activate NF-
κB and cause upregulation of vascular 
endothelial growth factor (VEGF), vascular cell 
adhesion molecule-1 and inflammatory products, 
which possess a significant risk factor for 
vascular dysfunction [43]. Accumulation of AGEs 
crosslinks with extracellular proteins, altering the 
properties of structural proteins. This disruption 
compromises the integrity of vascular structure, 
ultimately resulting in vascular stiffening and 
myocardial dysfunction [44]. A recent study found 
that patients with established diabetes had 
higher levels of serum AGEs and intima-media 
thickness of common carotid arteries compared 
to those with newly diagnosed diabetes, 
indicating greater risk factors for CVD [45]. 
Serum AGEs levels were found to be positively 
correlated with plasma ADMA levels. Advanced 
glycation end products (AGEs) suppress DDAH-
II, an enzyme responsible for ADMA degradation, 
thereby reducing its total enzymatic activity and 
resulting in increased ADMA levels [46]. Drugs 
that are specifically designed to halt AGE 
formation, split cross-links, or inhibit AGE 
receptors are used clinically. Cross-link breakers 

are drugs that disrupt cross-links between AGEs 
and extracellular molecules. They include 
thiazolium derivatives, like N-phenacyl thiazolium 
bromide (PTB) and alagebrium or ALT-711, and 
pyridinium derivatives, like TRC4186 and 
TRC4149. Inhibitors of AGE, such as 
aminoguanidine, pimagedine, carnosine, 
benfotiamine, and pyridoxamine, block the 
formation of AGE cross-links, thereby reducing 
AGEs. On the other hand, RAGE antagonists 
such as sRAGE, RAGE antibodies and RAGE 
inhibitors (Azeliragon) are also used to control 
RAGE activation as they trigger inflammation and 
cause general cell dysfunction [47]. Notably, 
antidiabetic drugs such as metformin, 
thiazolidinediones, meglitinides, sulfonylureas 
and dipeptidyl peptidase 4 inhibitors, lipid-
lowering drugs like statins, and antihypertensive 
agents such as angiotensin receptor blockers, 
angiotensin-converting enzyme inhibitors and 
calcium channel blockers, are currently used as 
these drugs inhibits AGEs production [47]. 
 
Excessive accumulation of peroxynitrite causes 
damage to natural antioxidants such as reduced 
glutathione (GSH) and superoxide dismutase 
(SOD) [48,49]. Peroxynitrite is responsible for 
direct oxidation of GSH and inactivation of SOD 
through nitration [50]. This leads to diminished 
cell antioxidant defense mechanisms, increasing 
superoxide levels. 
 
Role of diacylglycerol (DAG) and protein 
kinase C pathway 
 
It is important to highlight that elevated blood 
glucose levels, or hyperglycemia, lead to an 
increased production of diacylglycerol (DAG), 
which subsequently triggers activation of the 
protein kinase C (PKC) pathway  [51].  As a 
result of increased oxidative stress, activation of 
PKC stimulates the production of NADPH 
oxidase and AGEs, both of which are widely 
recognized as contributors to ED [52]. 
 
Role of hexosamine pathway and protein O-
GlcNAcylation 
 
Hyperglycemia, through hexosamine pathway 
activation, increases protein O-GlcNAcylation 
which causes impairment in NO-mediated 
relaxation. This is linked with decreased 
phosphorylation of eNOS by Akt where 
O‐GlcNAc competitively inhibits binding site of 
eNOS phosphorylation [53]. Masaki et al. 
reported that protein O-GlcNAcylation changes 
phenotype of endothelial cells in people with 
diabetes [54]. Protein O-GlcNAcylation was 
found to augment oxidative stress through 
activation of NADPH oxidase, which impairs 
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vascular function [55].  The use of glutamine 
inhibitors that inhibit the hexosamine pathway 
reversed the suppression of eNOS 
phosphorylation [53] and reinstated 
endothelium‐dependent arterial relaxation in 
diabetic rats. Overexpression of O-GlcNAcase 
(OGA) that mediates removal of protein O-
GlcNAcylation was found to improve vascular 
relaxation in a diabetic mouse model, implying 
that inhibiting O-GlcNAc restores endothelial 
function impaired by hyperglycemia [55]. 
 
Glycocalyx disruptions 
 
Hyperglycaemic conditions disrupt glycocalyx 
(GCX) in vivo and in vitro. Glycocalyx 
downregulates eNOS expression and therefore 
reduces the production of nitric oxide. Recent 
studies suggest that empagliflozin, an SGLT2 
inhibitor used to treat type 2 diabetes, decreases 
inflammation in endothelium and alleviates 
endoplasmic reticulum stress caused by 
prolonged glycocalyx disruption [56]. 
Empagliflozin also reduced oxidative stress and 
improved diabetes-induced vascular dysfunction 
in streptozotocin-induced diabetic rats [57]. The 
anesthetic, sevoflurane, was seen to promote 
endothelial glycocalyx restoration and 
vasodilation by increasing sialyltransferase 
expression during oxidative stress [58]. 
 

CONCLUSION 
 
Impairment in endothelium-dependent relaxation 
is noticed in diabetes, where endothelial function 
is primarily regulated by NO. Increased oxidative 
stress and activation of several pathways 
contribute to impaired relaxation and ED in 
diabetes. Therefore, understanding the role of 
NO and the pathophysiology of disordered 
endothelial responses in diabetes will aid in 
selecting the appropriate therapeutic agents 
needed to reinstate endothelial function and 
prevent vascular complications of diabetes. 
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