Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Development and Targeting Efficiency of Irinotecan Engineered Proniosomes

Prakash S Goudanavar1,2 , Vijay G Joshi3

1Jawaharlal Nehru Technological university Kukatpally, Hyderabad, India; 2Department of Pharmaceutics N.E.T Pharmacy College, Raichur, Karnataka, India; 3Department of Pharmaceutics Government College of Pharmacy, Bangalore, Karnataka, India.

For correspondence:-  Prakash Goudanavar   Email: p.goudanavar@rediffmail.com   Tel:+918532223340

Received: 6 March 2011        Accepted: 12 December 2011        Published: 21 February 2012

Citation: Goudanavar PS, Joshi VG. Development and Targeting Efficiency of Irinotecan Engineered Proniosomes. Trop J Pharm Res 2012; 11(1):1-8 doi: 10.4314/tjpr.v11i1.1

© 2012 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: This study is aimed at achieving improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of irinotecan. 
Methods: Proniosomes of irinotecan hydrochloride trihydrate were prepared by slurry method using different surfactants, cholesterol and dicetyl phosphate. The formulations were then characterized with respect to shape, surface morphology, entrapment efficiency, in vitro drug release, in vivo drug targeting and stability.
Results: The proniosomes were smooth in texture indicating, thin and uniform coating over maltodextrin powder. The highest entrapment efficiency was found for formulation F2 (74.9 ± 2.7 %). The highest cumulative drug release in 24 h was achieved with formulation F3 (98.2 %) In vivo results for the proniosomes reveal that the drug was preferentially targeted to liver followed by lung and spleen.  Stability studies indicate that 4 ºC was the most suitable condition for the storage of formulation F2.
Conclusion: Proniosomes offer a suitable alternative colloidal carrier approach to achieving drug targeting. Proniosomes containing irinotecan are retained at targeted sites and are capable of releasing drug for an extended period of time.

Keywords: Irinotecan, proniosomes, Drug targeting, In vivo tissue distribution, Stability studies

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates