Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Effect of Alisma plantago-aquatica Linn extract on hyperprolactinemia in rats

Ming Wen, De-ming Tian, Shao-feng Shi, Xin-hua Chen, Yan-xiang Zhang, Lin Wang

Department of Obstetrics and Gynecology, The First People's Hospital of Wuhu City, Wuhu 241000, Anhui, China;

For correspondence:-  Lin Wang   Email: wangling494@126.com   Tel:+865532676321

Accepted: 27 May 2019        Published: 30 June 2019

Citation: Wen M, Tian D, Shi S, Chen X, Zhang Y, Wang L. Effect of Alisma plantago-aquatica Linn extract on hyperprolactinemia in rats. Trop J Pharm Res 2019; 18(6):1273-1276 doi: 10.4314/tjpr.v18i6.18

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the anti-hyperprolactinemia effect and mechanism of action of of Alisma plantago-aquatica Linn. extract (APLE) in rats.
Methods: The hyperprolactinemia (hyperPRL) model of rats was established by intraperitoneal (i.p.) metoclopramide (200 mg/kg daily) for 10 days. Sixty rats were divided into six groups (n = 10 each): normal group), hyperPRL control group, hyperPRL plus 0.6 mg/kg bromocriptine (as a positive control) group, and hyperPRL plus high (14.4 g/kg), medium (7.2 g/kg), or low (3.6 g/kg) dose of APLE. Bromocriptine or vehicle control was administered to the rats daily for 30 days, and the hypothalamus dopamine D2 receptor, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP) levels were investigated by Western blot.
Results: Compared with the normal rats, hypothalamus dopamine D2 receptor protein expression was significantly lower in hyperPRL rats (p < 0.01), but was changed significantly after 30-day doses (various) of APLE administration (3.6 g/kg, p < 0.05; 7.2 and 14.4 g/kg, p < 0.01). Compared with the control rats, hypothalamus PKA and cAMP levels were significantly higher in hyperPRL rats (p < 0.01). These increases in PKA and cAMP were significantly attenuated by 30-day of bromocriptine treatment or various doses of APLE (p < 0.01).
Conclusion: The anti-hyperPRL activity of APLE is confirmed from the findings of this study Thus, the plant can potentially be developed into a new anti-hyperprolactinemia drug.

Keywords: Hyperprolactinemia, Dopamine D2 receptor, cAMP/PKA, Alisma plantago-aquatica

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates