Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Formulation, characterization and optimization of nebivolol-loaded sustained release lipospheres

Muhammad Hanif1, Hafeez U Khan1,2 , Samina Afzal1, Abdul Majeed1, Nabila Iqbal2, Khurram Afzal3, Mehwish Andleeb4, Aisha Rauf5, Athar Farooq1

1Faculty of Pharmacy, Bahauddin Zakariya University, Multan; 2Faculty of Pharmacy, University of Sargodha, Sargodha; 3Department of Food Sciences, Bahauddin Zakariya University, Multan; 4Faculty of Pharmacy and Alternative Medicines, Islamia University, Bahawalpur; 5Institute of Pharmaceutical Sciences, Quaid-e-Azam University, Islamabad, Pakistan.

For correspondence:-  Hafeez Khan   Email: qarani_pharmacist@yahoo.com   Tel:+923368658751

Accepted: 11 January 2019        Published: 28 February 2019

Citation: Hanif M, Khan HU, Afzal S, Majeed A, Iqbal N, Afzal K, et al. Formulation, characterization and optimization of nebivolol-loaded sustained release lipospheres. Trop J Pharm Res 2019; 18(2):223-231 doi: 10.4314/tjpr.v18i2.2

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To formulate, characterize and optimize nebivolol-loaded sustained release lipospheres (LPs) using beeswax (BW) as the drug carrier.
Methods: Nebivolol-loaded LPs were formulated using solvent evaporation technique (SET) and characterized. The impact of independent variables on responses such as percentage yield (PY), entrapment efficiency (EE) and drug release after 12 h (DR12) was assessed using central composite design (CCD). Numerical and graphical optimization techniques were also used to evaluate outcomes of the measured responses.
Results: Twenty micron-sized (20 - 100 µm), smooth spherical LPs with good rheological properties were produced. The yield ranged from 33 (F10) to 81 % (F6), while EE ranged from 32 (F4 and F9) to 69 % (F6). The results of rheological evaluation revealed angle of repose > 24 o, Hausner’s ratio > 1.5, and Carr’s index ranging from 13 to 19 %. Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and x-ray diffraction (XRD) revealed nebivolol and BW compatibility, and the absence of possible interactions between formulation components. Duration of nebivolol release was strongly associated with BW concentration and formulation F15 showed minimum drug release (46 %). Drug release was significantly higher in formulations with similar BW concentrations and low Tween-20 (T-20) concentrations (F1 and F11) than in formulations with high T-20 concentrations (F2, p < 0.05). The zeta potential of deflocculated LPs ranged from +15 to +35 mV. Nebivolol release (46 - 85 %) at pH 6.8 was significantly affected by BW concentration and it followed zero order model.
Conclusion: The results obtained in this study have shown that BW is a suitable material for producing an effective sustained release formulation. The mechanism of drug release in nebivolol- loaded LPs is diffusion accompanied by erosion.

Keywords: Lipospheres, Nebivolol, Beeswax, Formulation, Central composite design

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates