Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Formulation and Optimization of Celecoxib-Loaded Microspheres Using Response Surface Methodology

M K Shahzad1, M Ubaid1,2, G Murtaza2

1Faculty of Pharmacy, Bahauddin Zakariya University, Multan; 2Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.

For correspondence:-  G Murtaza   Email: gmdogar356@gmail.com   Tel:+00923142082826

Received: 29 December 2011        Accepted: 5 August 2012        Published: 18 October 2012

Citation: Shahzad MK, Ubaid M, Murtaza G. Formulation and Optimization of Celecoxib-Loaded Microspheres Using Response Surface Methodology. Trop J Pharm Res 2012; 11(5):695-702 doi: 10.4314/tjpr.v11i5.1

© 2012 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To employ response surface methodology (RSM) for statistical optimization of formulation factors in the preparation of celecoxib-loaded microspheres.
Methods: Celecoxib microspheres were prepared by solvent evaporation method. Biodegradable/biocompatible polymers, Eudragit L-100 and polyvinyl pyrrolidone, were used in the encapsulation procedure. A central composite design employing Stat-Ease design Expert®, version 7.0.3 having a unit value of α was used according to reference protocols to assess the influence of two independent variables (i.e., the concentration of the two polymers used) on four dependent variables (i.e., recovery, encapsulation efficiency and % drug released). The polymers used were Eudragit-L100 (X1) and polyvinyl pyrrolidone (X2). The microspheres were characterized for size, shape, recovery (%), entrapment efficiency and drug release.
Results: The recovered total weight of microspheres ranged between 49.4 ± 3.1 and 91.1 ± 4.8 %, and it decreased with increase in the concentration of PVP. Entrapment efficiency was in the range of 54.1 ± 2.9 to 95.6 ± 3.7 %, and was also dependent on polymer concentration. The release of celecoxib increased with decrease in Eudragit L-100 concentration and increase in PVP concentration. Higuchi model was the best-fit drug release from all the formulations. Korsemeyer-Peppas release exponent (n) indicates that drug release pattern was non-Fickian diffusion.
Conclusion: Using RSM, it is possible to optimize the drug release properties of celecoxib-loaded microspheres. A celecoxib-loaded microsphere formulation with optimum recovery, entrapment efficiency and release behavior was proposed.

Keywords: Celecoxib, Eudragit L-100, Polyvinyl pyrrolidone, Response surface methodology, Microspheres

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates