Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Gastroretentive Floating Microspheres of Silymarin: Preparation and In Vitro Evaluation

Rajeev Garg, G D Gupta

Department of Pharmaceutics and Pharmaceutical Technology, ASBASJSM College of Pharmacy, Bela, Ropar-140111, India;

For correspondence:-  G Gupta   Email: indianpharmacist@sify.com   Tel:+919888867172

Received: 8 January 2009        Accepted: 7 December 2009        Published: 23 February 2010

Citation: Garg R, Gupta GD. Gastroretentive Floating Microspheres of Silymarin: Preparation and In Vitro Evaluation. Trop J Pharm Res 2010; 9(1):56-66 doi: 10.4314/tjpr.v9i1.8

© 2010 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To prepare and evaluate floating microspheres of silymarin for prolonged gastric residence time and increased drug bioavailability.
Methods: Cellulose microspheres – formulated with hydroxylpropyl methylcellulose (HPMC) and ethyl cellulose (EC) – and Eudragit microspheres – formulated with Eudragit® S 100 (ES) and Eudragit® RL (ERL) - were prepared by an emulsion-solvent evaporation method. The floating microspheres were evaluated for flow properties based on parameters such as angle of repose and compressibility index, as well as for various other physicochemical properties including particle size, incorporation efficiency, in vitro floatability, and in vitro drug release. The shape and surface morphology of the microspheres were characterised by optical and scanning electron microscopy.
Results: Mean particle size increased while drug release rate decreased with increasing EC and ES contents of cellulose and Eudragit microspheres, respectively. Scanning electron microscopy showed pores on the surface and interior of the microspheres. The microspheres exhibited prolonged drug release for 12 h while still remained buoyant. Drug release kinetics, evaluated using the linear regression method, followed Higuchi kinetics and drug release mechanism was of the non-Fickian type.
Conclusion: The developed floating microspheres of silymarin exhibited prolonged drug release in simulated gastric fluid for at least 12 h, and, therefore, could potentially improve the bioavailability of the drug as well as patient compliance.

Keywords: Gastroretentive; Prolonged release; Silymarin; Floating microspheres; Ethyl cellulose; Hydroxypropyl methyl cellulose; Eudragit

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates