Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Improvement of Arbutin Trans-Epidermal Delivery Using Radiofrequency Microporation

Junho Won, Jin Woo Park

College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Republic of Korea;

For correspondence:-  Jin Park   Email: jwpark@mokpo.ac.kr   Tel:+82614502704

Received: 15 July 2014        Accepted: 17 October 2014        Published: 24 November 2014

Citation: Won J, Park JW. Improvement of Arbutin Trans-Epidermal Delivery Using Radiofrequency Microporation. Trop J Pharm Res 2014; 13(11):1775-1781 doi: 10.4314/tjpr.v13i11.1

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To assess the ability of radiofrequency (RF) microporation to promote trans-epidermal delivery of arbutin.
Methods: To investigate the enhancing effect of RF microchannels on skin permeation of arbutin, in vitro skin permeability studies were performed with RF microporation-treated Hartley albino guinea pig skin using Franz diffusion cell system. Furthermore, improved depigmentation effects in brown guinea pig in vivo after treatment with RF microporation was evaluated to create hydrophilic microchannels for arbutin trans-epidermal delivery.
Results: RF microporator caused disruption of the stratum corneum (SC) and created 50 μm diameter microchannels at a depth of 100 μm in the skin. RF microporation increased skin permeability of arbutin 2.25-fold compared to untreated skin exposed to RF in vitro. Arbutin administration led to considerable skin depigmentation following RF microporation of UV-induced hyperpigmented skin in a 28-day in vivo experiment (ΔL-value on day 28: UV, 0.17 ± 0.50; UV + RF, 0.07 ± 0.48; UV + arbutin, 1.32 ± 0.51 and UV + RF + arbutin, 1.82 ± 0.53).
Conclusion: RF microporation seems to be a suitable physical trans-epidermal delivery technology for topical application of highly hydrophilic depigmentation agents through the hydrophobic skin barrier.

Keywords: Radiofrequency microporation, Trans-epidermal delivery, Depigmentation, Arbutin

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates