Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

In vitro Evaluation of Nateglinide-Loaded Microspheres Formulated with Biodegradable Polymers

Sajid Bashir1 , Imran Nazir1,2, Hafeez Ullah Khan1, Alamgeer1, Hafiz M Irfan1, Sabiha Karim3, Fakhar ul Hassnain1, Sumbul Qamar1, Muhammad Asad1,4

1Faculty of Pharmacy, University of Sargodha, Sargodha 40100; 2Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060; 3College of Pharmacy, University of Punjab, Lahore 54000; 4School of Pharmacy, The University of Faisalabad, Faisalabad 38000, Pakistan.

For correspondence:-  Sajid Bashir   Email: sajidpharm@gmail.com   Tel:+923009389717

Received: 13 June 2013        Accepted: 9 May 2014        Published: 25 July 2014

Citation: Bashir S, Nazir I, Khan HU, Alamgeer , Irfan HM, Karim S, et al. In vitro Evaluation of Nateglinide-Loaded Microspheres Formulated with Biodegradable Polymers. Trop J Pharm Res 2014; 13(7):1047-1053 doi: 10.4314/tjpr.v13i7.6

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To formulate and evaluate sustained release microspheres of nateglinide (NTG) for enhanced patient compliance.
Methods: Nateglinide microspheres were prepared with varying proportions of biodegradable polymers (olibanum gum and guar gum) by calcium chloride/sodium alginate ionic gelation method. The microspheres were characterized by micromeritic analysis, particle size analysis, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and in vitro drug release studies. Yield and encapsulation efficiency were also evaluated while drug release data were subjected to various kinetic models.
Results: Micromeritic analysis showed good flow properties of the microspheres while yield and microsphere size were in the range of 70 to 80 % and 781 to 842 µm, respectively. FTIR and DSC results indicate the absence of drug-polymer interactions while SEM revealed that microspheres were almost spherical shape and porous in nature. Drug release was sustained in simulated intestinal fluid (pH 7.2), extending up to 10 to 12 h with greater release retardation in microspheres containing olibanum gum. The release pattern followed Higuchi kinetics model with non-Fickian diffusion.
Conclusion: Suitable microspheres for sustained release of nateglinide can be formulated by ionic gelation method.

Keywords: Nateglinide, Microspheres, Micromeritics, Drug release, Ionic gelation, Olibanum gum, Guar gum

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates