Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Inhibition of fungal aflatoxin B1 biosynthesis by diverse botanically-derived polyphenols

Wei Zhou, Liang-Bin Hu, Yang Zhao, Miao-Yan Wang, Hao Zhang, Hai-Zhen Mo

School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China;

For correspondence:-  Hai-Zhen Mo   Email: mohz@163.com   Tel:+8603733693519

Received: 28 October 2014        Accepted: 11 March 2015        Published: 26 April 2015

Citation: Zhou W, Hu L, Zhao Y, Wang M, Zhang H, Mo H. Inhibition of fungal aflatoxin B1 biosynthesis by diverse botanically-derived polyphenols. Trop J Pharm Res 2015; 14(4):605-609 doi: 10.4314/tjpr.v14i4.7

© 2015 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To identify and characterize the capacity of diverse botanically-derived polyphenols to inhibit aflatoxin B1 (AFB1) production by Aspergillus flavus.
Methods: A tea-derived polyphenol mixture and numerous individual polyphenols were tested for their effects on A. flavus growth and AFB1 production. Fungal spores were cultured for 60 h with polyphenols (range 0 R10; 1,000 µg/mL). The fungi were enumerated by hemocytometry, and AFB1 in culture supernatants was quantified by high-performance liquid chromatography (HPLC).
Results: Neither the tea-derived polyphenol mixture nor individual polyphenol compound, except quercetin, inhibited A. flavus growth. Quercetin detectably inhibited growth at 800 µg/mL; none of the remaining polyphenols inhibited fungal proliferation, even at 1,000 μg/mL. However, catechin mixture and all individual polyphenols differentially inhibited fungal AFB1 biosynthesis. Non-ester catechin derivatives revealed stronger inhibitory activity than ester derivatives.
Conclusion: Quercetin exhibits the strongest inhibitory effect on AFB1 production and is the only test compound that also inhibits fungal proliferation. Botanically-derived polyphenols are, therefore, promising reagents for controlling fungal contamination and associated toxic aflatoxin deposition in harvested crops and in food processing operations.

Keywords: Polyphenols, Quercetin, Aflatoxin B1, Inhibition, Antioxidation

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates