Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Preparation, Characterization and Antibacterial Properties of Silver-Chitosan Nanocomposites Using Different Molecular Weight Grades of Chitosan

S Honary1 , K Ghajar1, P Khazaeli2, P Shalchian2

1Mazandaran University of Medical Sciences, School of Pharmacy& Pharmaceutical Sciences Research Center, Sari, Iran; 2Kerman University of Medical Sciences, School of Pharmacy, Kerman, Iran.

For correspondence:-  S Honary   Email: shonary@yahoo.com   Tel:+981513543084

Received: 14 July 2010        Accepted: 10 January 2011        Published: 14 February 2011

Citation: Honary S, Ghajar K, Khazaeli P, Shalchian P. Preparation, Characterization and Antibacterial Properties of Silver-Chitosan Nanocomposites Using Different Molecular Weight Grades of Chitosan. Trop J Pharm Res 2011; 10(1):69-74 doi: 10.4314/tjpr.v10i1.11

© 2011 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To study the effect of chitosan molecular weight on the physicochemical and antibacterial properties of silver-chitosan nanoparticles.
Methods:  A series of silver-chitosan nanoparticles of different sizes were produced using various molecular weight (MW) grades of chitosan by an aqueous chemical reduction method. The nanoparticles were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE). The antibacterial properties of the nanoparticles were also evaluated by agar diffusion method.
Results: The size of the silver-chitosan nanoparticles, ranging from 21.9 to 175.3 nm, was influenced by chitosan MW as well as by other process conditions. Although, the nanoparticles were not stable in liquid form, they however showed good stability in the solid state due to their low zeta potential. SEM images indicate that the nanoparticles were spherical. The antibacterial activity of the nanoparticles against Staphylococcus aureus increased with decrease in particle size owing to increase in surface area. The smallest particle size (21.9 nm) was obtained by using high chitosan MW at 4 °C and a stirring speed of 800 rpm.
Conclusion:  Chitosan is an effective agent for the preparation of silver nanoparticles. The size of the nanoparticles can be modulated by varying both chitosan MW and process conditions such as temperature and stirring speed.

Keywords: Chitosan; Antibacterial activity; Silver nanoparticles; Molecular weight; Particle size; Dynamic light scattering; Laser Doppler electrophoresis

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates