Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

A Novel Mechanistic Approach to Identify New Antifungal Lead Compounds Based on Amphotericin B Molecular Architecture

Marzieh Ferdosian, Soroush Sardari

Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute, Tehran, Iran 13164;

For correspondence:-  Soroush Sardari   Email: ssardari@hotmail.com   Tel:+982166953311

Received: 30 April 2012        Accepted: 25 February 2013        Published: 24 April 2013

Citation: Ferdosian M, Sardari S. A Novel Mechanistic Approach to Identify New Antifungal Lead Compounds Based on Amphotericin B Molecular Architecture. Trop J Pharm Res 2013; 12(2):181-188 doi: 10.4314/tjpr.v12i2.8

© 2013 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To identify new antifungal lead compounds based on amphotericin B (AmB) molecular architecture.
Methods: The strategy employed was molecular similarity search and screening based on the molecular constraints of polyene macrolide antibiotics, as well as docking experiments. Several new compounds were analyzed for their general inhibitory effect against indicator microbial strains. Interaction of the antifungal compounds with ergosterol and cholesterol was studied by UV-Vis spectroscopy and their effect on lipid/polydiacetylene (PDA) vesicles identified. Furthermore, the cytotoxicity of the compounds was evaluated and compared with that of amphotericin B.
Results: In silico screening of 20,000 compounds obtained from the similarity search yielded seven candidates for in vitro antifungal test. The MIC of the more effective compounds, delta-decalactone and mandelonitrile, against three fungi - Candida albicans, Saccharomyces cerevisiae and Aspergillus niger - was in the range of < 46.8 to 750.0 µg/ml. By comparing peak position shifts for the absorbance of mandelonitrile and delta-decalactone individually and in combination with sterols, it was found that mandelonitrile has a more selective interaction with ergosterol. The color change intensity of lipid/PDA vesicles indicated that delta-decalactone potently disturbed simulated memberane structure. Furthermore, cytotoxicity data for mandelonitrile and delta-decalactone on HepG2 and MCF7 show that mandelonitrile is less cytotoxic, with IC50 of 1095.04 and 2010.34 µg/ml, and more selective against fungal cells.
Conclusion: This study presents a new insight into algorithmic discovery of novel antifungal agents by in silico methodology based on a mechanistic approach.

Keywords: Mandelonitrile, Delta-decalactone, Amphotericin B, Virtual screening, Anitifungal lead compounds, Cytotoxicity, Mechanistic approach

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates