Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption and Utilization of Mice Fed High-Sugar Diet

Bin Wang1,2, Shuping Wang2, Jin Sun1,2, Yonghui Shi1,2, Guowei Le1,2

1State Key Laboratory of Food Science and Technology; 2School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.

For correspondence:-  Guowei Le   Email: lgw@jiangnan.edu.cn   Tel:+8651085917789

Received: 18 December 2013        Accepted: 17 February 2014        Published: 24 March 2014

Citation: Wang B, Wang S, Sun J, Shi Y, Le G. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption and Utilization of Mice Fed High-Sugar Diet. Trop J Pharm Res 2014; 13(3):369-375 doi: 10.4314/tjpr.v13i3.9

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the influence of Salvianolic acid B (Sal B) on oxidative stress in mice administrated with glucose, sucrose and high-sugar diet.
Methods: 40 Kunming mice were divided into four groups of 10. After a fast of 12 h, mice were treated by oral infusion respectively with physiological saline, 20 % glucose, 20 % sucrose, and 20 % glucose + 0.002 % Sal B. Blood glucose and levels of reactive oxygen species (ROS) were determined at 0, 0.5, 1.0, 1.5, and 2.0 h after administration. Another 3 groups of 10 Kunming mice each were fed with normal diet, high-sugar diet (20 % sucrose, HSD) and HSD + 0.002 % Sal B. Four weeks later, the levels of ROS as well as antioxidant enzyme activity were determined.
Results: Blood ROS showed the first peak at 0.5 h and a higher peak at 1.5 h after high glucose administration. ROS were mainly produced in liver and pancreas with the utilization of glucose. Sal B administration prevented increase in blood glucose and significantly (p < 0.05) reduced ROS produced in the process of glucose absorption and utilization, especially the latter. Sal B decrease oxidative stress induced by HSD through scavenging ROS associated with increased activity of antioxidant enzymes.
Conclusion: This study demonstrates that Sal B can decrease oxidative stress in glucose absorption and utilization in HSD mice. Thus, the findings provide a basis for a potential interventional strategy for protecting against oxidative damage induced by HSD.

Keywords: Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates