Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Curcumin-Hydroxypropyl-β-Cyclodextrin Inclusion Complex Preparation Methods: Effect of Common Solvent Evaporation, Freeze Drying, and pH Shift on Solubility and Stability of Curcumin

Chutima Jantarat , Pornpak Sirathanarun, Shantika Ratanapongsai, Pawut Watcharakan, Siripa Sunyapong, Adil Wadu

School of Pharmacy, Walailak University, Thasala District, Nakhon Si Thammarat 80161, Thailand;

For correspondence:-  Chutima Jantarat   Email: chutima.ja@wu.ac.th

Received: 10 May 2014        Accepted: 8 July 2014        Published: 18 August 2014

Citation: Jantarat C, Sirathanarun P, Ratanapongsai S, Watcharakan P, Sunyapong S, Wadu A. Curcumin-Hydroxypropyl-β-Cyclodextrin Inclusion Complex Preparation Methods: Effect of Common Solvent Evaporation, Freeze Drying, and pH Shift on Solubility and Stability of Curcumin. Trop J Pharm Res 2014; 13(8):1215-1223 doi: 10.4314/tjpr.v13i8.4

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the effect of the preparation method on the inclusion complex of curcumin and hydroxypropyl-β-cyclodextrin (HP- β -CD).
Methods: HP-β-CD was selected to prepare an inclusion complex with curcumin at a molar ratio of 1:1. The inclusion complexes were prepared using three different methods: common solvent evaporation (CSE), freeze drying (FD), and pH shift. The inclusion complexes were characterized by differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy. The content, solubility, dissolution, and stability of the complexes were evaluated and compared with curcumin and their physical mixture.
Results: Formation of inclusion complexes was confirmed by DSC and FTIR results. CSE and FD methods gave a high content of curcumin in the inclusion complexes (> 88.39 %), while pH shift gave a lower content (64.04 %). All three methods significantly (p < 0.05) increased curcumin solubility (> 276.43-fold). However, higher stability complexes were obtained using CSE and FD methods.
Conclusion: Among the three preparation methods (CSE, FD and pH shift) used for the inclusion complexes, CSE is the most suitable method for preparation of curcumin-HP-β-CD inclusion complex for increased curcumin solubility and stability.

Keywords: Curcumin, Cyclodextrin, Inclusion complex, Solubility, Stability, Common solvent evaporation, Freeze drying, pH shift

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates