Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines

Feiping He1,2, Weixing Yu2, Xiaosong Fan2, Baiye Jin1 ,

1Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang; 2Department of Urology, Shaoxing Shangyu People’s Hospital, Shaoxing 312300, Zhejiang, China.

For correspondence:-  Baiye Jin   Email: baiyejin@hotmail.com   Tel:+8657187236666

Accepted: 23 November 2017        Published: 29 December 2017

Citation: He F, Yu W, Fan X, Jin B, In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines. Trop J Pharm Res 2017; 16(12):2793-2799 doi: 10.4314/tjpr.v16i12.2

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To establish a green method for production of titanium dioxide (TiO2) nanoparticles (NPs) using Cinnamomum tamala (C. tamala) leaf extract, and examine the in vitro cytotoxicity of the product in a human prostate cancer (D145) cell line.
Methods: TiO2 NPs were synthesized by mixing 20 mL of C. tamala leaf extract with 0.1 M titanium dioxide (Ti(OH)2) (80 mL) in aqueous solution with stirring for 2 h at room temperature. The TiO2 NPs were characterized using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), selected-area electron diffraction, and energy dispersive x-ray spectroscopy. The in vitro cytotoxicity against D145 cells was determined using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay.
Results: TEM and DLS analyses showed that the NPs were irregularly shaped, with an average particle size of 23 nm. The FT-IR spectrum of C. tamala leaf extract showed that the biomolecules were potentially involved in reduction processes. The negative zeta potential of -14 mV indicated that the NPs were stable and discrete while their crystalline nature was confirmed by XRD. Cytotoxicity analysis showed that the TiO2 NPs exhibit a dose-dependent toxic effect on D145 cells.
Conclusion: A facile and less expensive approach for the production of TiO2 NPs using C. tamala leaf extract has been developed. The TiO2 NPs showed dose-dependent cytotoxicity towards D145 cells

Keywords: Anticancer activity, Cinnamomum tamala, Green synthesis, Prostate cancer, TiO2 nanoparticles

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates