Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Comparative assessment of plasmid DNA delivery by encapsulation within or adsorbed on poly (D, L-lactide-co-glycolide) nanoparticles

Abd Almonem Doolaanea1,2 , Nur 'Izzati Mansor1, Nurul Hafizah Mohd Nor1, Mohd Affendi Bin Mohd Shafri2, Farahidah Mohamed1,2,4

1Department of Pharmaceutical Technology; 2IKOP Sdn. Bhd., Pilot Plant Pharmaceutical Manufacturing, Faculty of Pharmacy; 3Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan; 4International Institute of Halal Research & Training, Kulliyyah of Engineering, International Islamic University Malaysia, PO Box 10, 50728, Kuala Lumpur, Malaysia.

For correspondence:-  Abd Doolaanea   Email: abdalmonemdoolaanea@yahoo.com   Tel:+60136238628

Accepted: 21 October 2017        Published: 31 January 2018

Citation: Doolaanea AA, Mansor N', Nor NH, Shafri MA, Mohamed F. Comparative assessment of plasmid DNA delivery by encapsulation within or adsorbed on poly (D, L-lactide-co-glycolide) nanoparticles. Trop J Pharm Res 2018; 17(1):1-10 doi: 10.4314/tjpr.v17i1.1

© 2018 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) encapsulated within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with that adsorbed on PLGA nanoparticles.
Methods: PLGA nanoparticles were prepared using solvent-evaporation method. To encapsulate pDNA within the particles, it was first complexed with cetyltrimethylammonium bromide (CTAB) and then added to the oil phase during the synthesis. For the adsorption, PLGA nanoparticles were first modified with either CTAB or chitosan and then pDNA was adsorbed on the particle surface by electrostatic interaction.
Results: Nanoparticles encapsulating pDNA exhibited better plasmid loading and protection with significantly lower burst release (p < 0.05) compared to that of the nanoparticles with adsorbed plasmid. Cell uptake of chitosan-modified nanoparticles by murine neuroblastoma (N2a) cells was significantly (p < 0.05) higher than that of chitosan-free nanoparticles. Nanoparticles encapsulating pDNA showed higher transfection efficiency (p < 0.05) in N2a cells.
Conclusion: Encapsulation of pDNA within PLGA nanoparticles presents a potential strategy for gene delivery that is superior to pDNA adsorbed on the nanoparticle surface. In addition, encapsulation keeps the particle surface free for further modifications such as the addition of targeting ligands
 

Keywords: Poly (D,L-lactide-co-glycolide), Plasmid DNA, Encapsulation, Adsorption, Cellular uptake, Gene therapy, Targeting ligands

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates