Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: Preparation, in vitro characterization and cyctotoxity

A Alper Öztürk1,2 , Lucia Martin Banderas2, Maria D. Cayero Otero2, Evrim Yenilmez1, Behiye Senel3, Yasemin Yazan1

1Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eski#1;ehir, Turkey; 2Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain; 3Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eski#1;ehir, Turkey.

For correspondence:-  A Öztürk   Email: aaozturk@anadolu.edu.tr   Tel:+90223350580

Accepted: 16 November 2018        Published: 31 January 2019

Citation: Öztürk AA, Banderas LM, Otero MD, Yenilmez E, Senel B, Yazan Y. Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: Preparation, in vitro characterization and cyctotoxity. Trop J Pharm Res 2019; 18(1):1-11 doi: 10.4314/tjpr.v18i1.1

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To design, formulate and characterize sustained-release formulations of dexketoprofen trometamol (DT) nanoparticles (NPs)
Methods: Dexketoprofen trometamol (DT)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs were produced by double emulsion-solvent evaporation method. The NPs were variously characterized for drug loading and release, particle profile, as well as by thermal analysis, x-ray difraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance analysis (1H-NMR). Furthermore, the NPs were evaluated for cytotoxicity against NIH-3T3 cells by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Results: The DT-loaded NPs demonstrated nanostructural characteristics and extended drug release. Particle size was in the range of 243 and 295 nm which remained unchanged in drug stability testing in simulated gastrointestinal media. Encapsulation efficiency ranged from 49 – 64 % for all the formulations. Higuchi and Korsmeyer-Peppas were the best-fit release kinetic models for the NPs containing 5 and 10 % DT, respectively. The NPs with 10 % DT presented no significant cytotoxicty at the doses and periods studied.
Conclusion: Stable and non-toxic DT NPs with potential for sustained and controlled release of the drug have been successfully developed.

Keywords: Dexketoprofen trometamol, Poly-lactic-co-glycolic acid (PLGA), Nanoparticles, Release kinetics, Stability

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates