Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Development of reduced-salt gel of silver carp meat batter using low frequency ultrasound: Effect on color, texture, cooking loss and microstructure

Riya Liuhartana Nasyiruddin1,2, Willard Burton Navicha1,3, Abuubakar Hassan Ramadhan1, Fang Yang1, Qixing Jiang1, Yanshun Xu1, Peipei Yu1, Wenshui Xia1

1State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; 2The Fishery Faculty, University of PGRI Palembang, Palembang, South Sumatera, 30263, Indonesia; 3Department of Human Ecology, Domasi College of Education, PO Box 49, Domasi, Zomba, Malawi.

For correspondence:-  Wenshui Xia   Email: xiaws@jiangnan.edu.cn   Tel:+8651085919121

Accepted: 17 March 2019        Published: 30 April 2019

Citation: Nasyiruddin RL, Navicha WB, Ramadhan AH, Yang F, Jiang Q, Xu Y, et al. Development of reduced-salt gel of silver carp meat batter using low frequency ultrasound: Effect on color, texture, cooking loss and microstructure. Trop J Pharm Res 2019; 18(4):773-780 doi: 10.4314/tjpr.v18i4.14

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To develop reduced-salt silver carp meat gels using low frequency ultrasound.
Methods: Silver carp meat batters were prepared with 0.5, 1 (reduced-salt) and 2 % (regular salt), and sonicated (20 KHz, 500 W) for 30 and 40 min, or unsonicated (control). Changes in gel properties were evaluated in terms of color, texture, cooking loss and microstructure using color measurement, puncture test, cooking loss and scanning electron microscopic (SEM) analysis, respectively.
Results: Ultrasound and salt exposure led to marked effects on color, texture and cooking loss in fish meat gels (p < 0.05). Reduction in salt content increased the lightness (L*) and cooking loss; and also decreased the sample values of greenness (-a*), breaking force, rupture distance and gel strength. Scanning electron microscopy (SEM) on regular-salt level samples showed that ultrasonic exposure decreased dense aggregates and increased the number and distribution of small cavity samples. Reduced-salt samples (1 % salt) subjected to 30 min sonication had better color (lighter) than control (0 min sonication), better texture (higher gel strength) and cooking loss comparable to that of  regular-salt level sample subjected to 30 min sonication, and similar to microstructures from normal salt samples without ultrasound exposure.
Conclusion: Low frequency ultrasound is suitable for preparing reduced-salt fish meat gels under suitable ultrasonic conditions.

Keywords: Silver carp, Fish meat batter, Gel, Reduced salt, Low frequency ultrasound

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates