Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Indole-thiophene conjugate inhibits proliferation of human cervical cancer cell lines through DNA damage

Xia Xu1, Hongbing Ma2, Fujun Wang1, Jiamiao Yan1

1Department of Pharmacy; 2Department of Oncology, Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi 725000, China.

For correspondence:-  Jiamiao Yan   Email: markdaf@yahoo.com   Tel:+869158183608

Accepted: 26 July 2019        Published: 28 August 2019

Citation: Xu X, Ma H, Wang F, Yan J. Indole-thiophene conjugate inhibits proliferation of human cervical cancer cell lines through DNA damage. Trop J Pharm Res 2019; 18(8):1705-1710 doi: 10.4314/tjpr.v18i8.20

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the inhibitory effect of indole-thiophene conjugate (ITC) against cervical cancer cells.
Methods: The effect of ITC on the proliferation of cervical cells was determined using 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide (MTT) assay. The apoptosis-inducing effect of ITC was analysed with flow cytometry, while its effect on cell invasion was assessed using Transwell assay.
Results: ITC inhibited proliferation of HeLa and Caski cancer cell lines, but it had no cytotoxicity against HCvEpC normal epithelial cells. Exposure to ITC at a dose of 12 μmol/L reduced the viability of HeLa and Caski cells to 22.56 and 24.78 %, respectively (p < 0.05). ITC treatment of HeLa cells enhanced the proportion of apoptotic cells. Exposure to ITC at a dose of 12 μmol/L led to near-complete inhibition of the invasive potential of HeLa cells. Moreover, exposure of HeLa cells to ITC downregulated the protein expressions of MMP-2 and MMP-9 (p < 0.05). The expressions of Bcl-2, p-ERK1/2 and p-Akt were markedly decreased in HeLa cells by ITC exposure. In addition, ITC increased Bax expression, and decreased Bcl-2/Bax ratio (p < 0.05).
Conclusion: ICT inhibits the proliferation and invasion of cervical cancer cells, and induces their apoptosis. It exhibits these effects via the suppression of Akt and ERK phosphorylation, thereby down-regulating the PI3K and MAPK pathways. Therefore, ITC may be beneficial for the treatment of cervical cancer.

Keywords: Thiophenes, Hetero-aromatic compounds, Metastasis, Phosphorylation, Cervical cancer

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates