Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

In silico screening of anti-inflammatory constituents with good drug-like properties from twigs of Cinnamomum cassia based on molecular docking and network pharmacology

Qing Zhang1, Ruolan Li1, Jia Liu1, Wei Peng1, Yongxiang Gao2, Chunjie Wu1, Xufeng Pu1,3

1School of Pharmacy; 2School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075; 3Chengdu Institute for Food and Drug Control, Chengdu 611137, PR China.

For correspondence:-  Xufeng Pu   Email: pxf68@263.net   Tel:+862885360259

Accepted: 23 September 2019        Published: 31 October 2019

Citation: Zhang Q, Li R, Liu J, Peng W, Gao Y, Wu C, et al. In silico screening of anti-inflammatory constituents with good drug-like properties from twigs of Cinnamomum cassia based on molecular docking and network pharmacology. Trop J Pharm Res 2019; 18(10):2125-2131 doi: 10.4314/tjpr.v18i10.18

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate by in silico screening the anti-inflammatory constituents of Cinnamomum cassia twigs.
Methods: Information on the constituents of C. cassia twigs was retrieved from the online Traditional Chinese Medicines (TCM) database and literature. Inflammation-related target proteins were identified from DrugBank, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genetic Association Database (GAD), and PharmGKB. The identified compounds were filtered by Lipinski’s rules with Discovery Studio software. The “Libdock” module was used to perform molecular docking; LibdockScores and default cutoff values for hydrogen bonds and van der Waals interactions were recorded. LibdockScores between the prototype ligand and target protein were set as the threshold; compounds with higher LibdockScores than threshold were regarded as active compounds. Cytoscape software was used to construct active constituent-target protein interaction networks.
Results: Sixty-nine potential inflammatory constituents with good drug-like properties in C. cassia twigs were screened in silico based on molecular docking and network pharmacology analysis. JAK2, mPEGS-1, COX-2, IL-1β, and PPARγ were considered the five most important target proteins. Compounds such as methyl dihydromelilotoside, hierochin B, dihydromelilotoside, dehydrodiconiferyl alcohol, balanophonin, phenethyl (E)-3-[4-methoxyphenyl]-2-propenoate, quercetin, and luteolin each interacted with more than six of the selected target proteins.
Conclusion: C. cassia twigs possess active compounds with good drug-like properties that can potentially be developed to treat inflammation with multi-components on multi-targets.

Keywords: Twigs, Cinnamomum cassia, inflammation, network pharmacology, molecular docking

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates