Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Molecular docking studies of natural compounds of naringin on enzymes involved in the urea cycle pathway in hyperammonemia

Ramakrishnan Arumugam1, Renuka Mani2, Amalan Venkatesan1, Senthilmurugan Sengamalai3, Vijayakumar Natesan1 , Sung-Jin Kim4

1Department of Biochemistry and Biotechnology, Annamalai University, Tamilnadu, India; 2Department of Biotechnology, Periyar University, Tamilnadu, India; 3Department of Zoology, Annamalai University, Tamilnadu, India; 4Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Republic of Korea.

For correspondence:-  Vijayakumar Natesan   Email: kimsj@khu.ac.kr   Tel:+8229610868

Accepted: 16 April 2020        Published: 31 May 2020

Citation: Arumugam R, Mani R, Venkatesan A, Sengamalai S, Natesan V, Kim S. Molecular docking studies of natural compounds of naringin on enzymes involved in the urea cycle pathway in hyperammonemia. Trop J Pharm Res 2020; 19(5):1037-1043 doi: 10.4314/tjpr.v19i5.19

© 2020 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the anti-hyperammonemic activity of naringin by molecular docking via in silico studies.
Methods: Urea cycle proteins were docked to the natural compound naringin as well as a standard drug, sodium benzoate. Hydrogen bonds and binding energy were obtained using Catalytic Site Atlas and Cast P Finder Software Tool.
Results: There were six urea cycle enzymes, including N-acetyl glutamate synthase, carbamoyl phosphate synthase I, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase I. On evaluating protein interactions with naringin, which is dynamically connected to the urea cycle pathway with hyperammonemia, naringin showed more hydrogen bonds and also produced higher binding energy when compared to the standard drug, sodium benzoate.
Conclusion: The results of the molecular docking study show that naringin interacts with urea cycle enzymes with more hydrogen bonds and higher bonding energy than the standard drug, sodium benzoate. This supports the hypothesis that naringin can prevent experimental hyperammonemia.

Keywords: Naringin, Sodium benzoate, Hyperammonemia, Urea cycle enzymes, In silico studies

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates