Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Ferula asafoetida Linn. is effective for early functional recovery following mechanically induced insult to the sciatic nerve of a mouse model

Syed Kashif Shahid Kamran1, Azhar Rasul2, Haseeb Anwar1, Shahzad Irfan1, Khizar Sami Ullah2, Shoaib Ahmad Malik3, Aroona Razzaq1, Nimra Aziz1, Nady Braidy4, Ghulam Hussain1

1Neurochemical Biology and Genetics Laboratory (NGL), Department of Physiology; 2Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad; 3Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan; 4Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, Australia.

For correspondence:-  Ghulam Hussain   Email: gh_azer@hotmail.com

Accepted: 18 August 2020        Published: 30 September 2020

Citation: Kamran SK, Rasul A, Anwar H, Irfan S, Ullah KS, Malik SA, et al. Ferula asafoetida Linn. is effective for early functional recovery following mechanically induced insult to the sciatic nerve of a mouse model. Trop J Pharm Res 2020; 19(9):1903-1910 doi: 10.4314/tjpr.v19i9.15

© 2020 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the effect of Ferula asafoetida (oleo gum resin powder) on sensory and motor functions retrieval on an induced sciatic nerve injury in a mouse model.
Methods: A mechanical crush was inserted in the sciatic nerve of all the experimental mice after acclimatization. The mice were allocated to four groups; one normal chow group (control, n = 7) and three Ferula asafoetida chow groups (each n = 7) of different doses (50, 100 and 200 mg/kg). Muscle grip strength, muscle mass, and sciatic functional index were measured to evaluate the motor function regain, while sensory function regain was assessed by hot plate test. Oxidative stress and glycemic levels were measured by biochemical assays.
Results: The findings of this study indicate that Ferula asafoetida 200 mg/kg has a highly significant (p ≤ 0.001) ameliorating effect in terms of improved grip strength (77.7 ± 5.4 % for 200 mg/kg vs. 46 ± 5.1 % for control), reversal of SFI towards normal ( -34 ± 8.1 for 200 mg/kg group vs. –61 ± 6.1 for control), decrease in paw withdrawal latency (7.10 ± 0.06 s for 200 mg/kg group vs. 15 ± 0.5 s for control) on day 12 post-injury, as well as restoration of skeletal muscle mass towards normal. Interestingly, F. asafoetida chow 50 mg/kg and 100 mg/kg groups also impacted significant (p < 0.01) improvement in the ameliorative effect. However, the differences among all treatment groups in ameliorating recovery were not significant (p > 0.05). Moreover, comparatively improved (p < 0.0001) total antioxidant capacity along with reduced total oxidant status (p = 0.01) in the Ferula asafoetida chow (200 mg/kg) group, indicate the antioxidative effect of this plant. Furthermore, the treated mice (200 mg/kg) also expressed an improved glycemic level (p = 0.0005).
Conclusion: Ferula asafoetida supplementation helps to accelerate both sensory and motor function retrieval following sciatic nerve injury. This improvement is thought to be correlated with the antioxidant capacity of the plant. However, further investigations are required to identify the therapeutic principles responsible for the observed actions.

Keywords: Sciatic nerve injury, Ferula asafoetida, Function recovery, Oxidative stress, Biochemical analysis

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates