Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Elucidation of the mechanisms underlying the anti-cholecystitis effect of the Tibetan medicine, Dida, using Network pharmacology

Chuan Liu1, Fang-Fang Fan1, Xuan-Hao Li1, Wen-Xiang Wang1, Ya Tu2, Yi Zhang1

1Ethnic Medicine Academic Heritage Innovation Research Center, Ethnic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137; 2Development Research Center of Traditional Chinese Medicine, China Academy of Traditional Chinese Medicine, Beijing 100700, China.

For correspondence:-  Yi Zhang   Email: zhangyi@cdutcm.edu.cn   Tel:+862861932600

Accepted: 17 August 2020        Published: 30 September 2020

Citation: Liu C, Fan F, Li X, Wang W, Tu Y, Zhang Y. Elucidation of the mechanisms underlying the anti-cholecystitis effect of the Tibetan medicine, Dida, using Network pharmacology. Trop J Pharm Res 2020; 19(9):1953-1961 doi: 10.4314/tjpr.v19i9.22

© 2020 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To study the mechanism involved in the anti-cholecystitis effect the Tibetan medicine “Dida”, using network pharmacology-integrated molecular docking simulations
Methods: In this investigation, the bioactive compounds of Dida were collected, network pharmacology methods to predict their targets, and networks were constructed through GO and KEGG pathway analyses. The potential binding between the bioactive compounds and the targets were demonstrated using molecular docking simulations.
Results: A total of 12 bioactive compounds and 50 key targets of Dida were identified. Two networks, namely, protein-protein interaction (PPI) network of cholecystitis targets, and compound-target-pathway network, were established. Network analysis showed that 10 targets (GAPDH, AKT1, CASP3, EGFR, TNF, MAPK3, MAPK1, HSP90AA1, STAT3, and BCL2L1) may be the therapeutic targets of Dida in cholecystitis. Analysis of the KEGG pathway indicated that the anti-cholecystitis effect of Dida may its regulation of a few crucial pathways, such as apoptosis, as well as toll-like receptor, T cell receptor, NOD-like receptor, and MAPK signaling pathways. Furthermore, molecular docking simulation revealed that CASP3, CAPDH, HSP90AA1, MAPK3, MAPK1, and STAT3 had well-characterized interactions with the corresponding compounds.
Conclusion: The mechanism underlying the anti-cholecystitis effect of Dida was successfully predicted and verified using a combination of network pharmacology and molecular docking simulation. This provides a firm basis for the experimental verification of the use of Dida in the treatment of cholecystitis, and enhances its rational application in clinical medication.

Keywords: Tibetan medicine, Dida, Cholecystitis, Mechanism of effect, Network pharmacology, Molecular docking simulation

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates