Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Eudragit E100 and polysaccharide polymer blends as matrices for modified-release drug delivery I: Physicomechanical properties

Ndidi C Ngwuluka , Elijah I Nep, Nelson A Ochekpe, Patricia O Odumosu, Patrick O Olorunfemi

Biomaterials and Drug Delivery Unit, Faculty of Pharmaceutical Sciences, University of Jos, 930001, Nigeria;

For correspondence:-  Ndidi Ngwuluka   Email: Ndidi.Ngwuluka@biodrudel.com   Tel:+23473290269

Received: 29 October 2015        Accepted: 7 October 2015        Published: 27 December 2015

Citation: Ngwuluka NC, Nep EI, Ochekpe NA, Odumosu PO, Olorunfemi PO. Eudragit E100 and polysaccharide polymer blends as matrices for modified-release drug delivery I: Physicomechanical properties. Trop J Pharm Res 2015; 14(12):2155-2162 doi: 10.4314/tjpr.v14i12.1

© 2015 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To compare the effects of two states of polymer/polymer blending (dry and aqueous/lyophilized) on the physicomechanical properties of tablets, containing blends of locust bean gum (LB) with Eudragit® E100 (E100) and sodium carboxymethylcellulose (SCMC) as matrices.
Methods: LB, SCMC and E100 were blended in their dry (as purchased) state or modified by aqueous blending and subsequent lyophilization, prior to use as matrices in tablets. The polymer blends were characterized by infra-red spectroscopy (FTIR), flow and compressibility tests, as well as physicomechanical analysis of their tablets.
Results: No significant variations were noticeable in the FTIR peaks of the individual polymers in the dry and the aqueous/lyophilized states. Aqueous/lyophilized blending of the polymers resulted in better flow properties. The aqueous/lyophilized matrices were denser with improved mechanical strength and the tablets were harder than those produced from dry blended polymers.
Conclusion: Dry blending of LB with E100 and SCMC greatly improved the physicomechanical properties of the tablets. This was further enhanced by aqueous/lyophilized blending.

Keywords: Drug delivery, Polymer blend, Eudragit, Locust bean gum, Levodopa, Sodium carboxymethylcellulose, Matrix, Physicomechanical properties

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates