Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

MicroRNA-612 regulates the proliferation and epithelial-to-mesenchymal transition of human colon cancer cells via G protein-coupled receptor 132 (GPR132)

Sha Shen1, Qingqing Guo1, Shuiping Zhan2

1Department of Pain Management; 2Department of General Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430000, China.

For correspondence:-  Shuiping Zhan   Email: zsp023@163.com   Tel:+862783353610

Accepted: 27 June 2021        Published: 29 July 2021

Citation: Shen S, Guo Q, Zhan S. MicroRNA-612 regulates the proliferation and epithelial-to-mesenchymal transition of human colon cancer cells via G protein-coupled receptor 132 (GPR132). Trop J Pharm Res 2021; 20(7):1345-1350 doi: 10.4314/tjpr.v20i7.4

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the effect of microRNA-612 (miR-612) on human colon cancer cells, and the mechanism involved.
Methods: expressions of miR-612 and GPR132 were determined by quantitative real-time polymerase chain reaction (qRT-PCR)el , while cell viability was evaluated using cell counting kit-8 (CCK8) and colony formation assays. Dual luciferase assay was used to determine the interaction between miR-612 and GPR132, while cell migration and invasion were measured by Transwell assay.
Results: The expression levels of miR-612 in colon cancer tissues and cell lines were significantly down-regulated (p < 0.05). Overexpression of miR-612 in colon cancer cells led to significant inhibition of their proliferation and colony formation. Transwell assays revealed that miR-612 overexpression markedly stopped the migration, invasion and epithelial-to-mesenchymal transition.
Conclusion: These results indicate that miR-612 exerts anti-cancer effect by suppressing the expression of GPR132 at the translational level. The in vitro tumor suppressive activity of miR-612 against colon cancer reveals its potential for the management of colon cancer.

Keywords: Colon cancer, micro-RNA, G-protein coupled receptor, Epithelial-to-mesenchymal transition

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates