Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Optimization of Clostridium tyrobutyricum encapsulation by extrusion method and characterization of the formulation

Muhammad Umar Yaqoob1, Bin Wang2, Xun Pei1, Zhiping Xiao1, Wanjing Sun1, Yuyue Jin1, Lujie Liu1, Wenjing Tao1, Geng Wang1, Haidong Wang1, Minqi Wang1

For correspondence:-  Minqi Wang   Email: wangmq@zju.edu.cn   Tel:+8657188982112

Accepted: 21 August 2021        Published: 30 September 2021

Citation: Yaqoob MU, Wang B, Pei X, Xiao Z, Sun W, Jin Y, et al. Optimization of Clostridium tyrobutyricum encapsulation by extrusion method and characterization of the formulation. Trop J Pharm Res 2021; 20(9):1783-1790 doi: 10.4314/tjpr.v20i9.2

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To optimize the process parameters for the encapsulation of Clostridium tyrobutyricum (Ct) and to determine its in vitro characteristics.
Methods: The process parameters, including the concentration of the wall and hardening material, Ct to gelatin ratio and hardening time, were studied by single factor analysis, while optimization was performed by orthogonal experimental design for the encapsulation rate of Ct.
Results: Optimal conditions exhibited by orthogonal experimental design at a 92.17 % encapsulation rate with a viable count of 9.61 ± 0.06 lgCFU/g were: 6 % modified starch, 3 % sodium alginate, and 2 % CaCl2 at a Ct to gelatin ratio of 1:1 with a hardening time of 30 min. The survival rates of encapsulated Ct were higher than free Ct in simulated gastric (6.22 %) and intestinal juices (15.55 %). Reduction in viable counts of Ct at 90 °C were higher for free cells (44.76 %) than encapsulated cells (28.09 %) after 30 min of heat treatment. Correspondingly, encapsulation boosted the capacity of Ct to withstand the strong acidic conditions of the stomach and improved the storage properties of Ct.
Conclusion: The results suggested that extrusion is a good technique for the encapsulation of Ct, as it enhances the viability of Ct during their transit through the gastrointestinal tract. Furthermore, encapsulation is favorable for Ct if planned for use in formulations where high temperature treatment is required.

Keywords: Encapsulation, Acid resistance, Bile salt tolerance, Clostridium tyrobutyricum, Extrusion, In vitro simulation, Temperature tolerance

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates