Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Cytotoxic activity of silver nanoparticles prepared from Psidium guajava L. (Myrtaceae) and Lawsonia inermis L (Lythraceae) extracts

Fatma M Abdel Bar1,2 , Mohamed M Abu Habib2,3, Fardous F El-Senduny4, Farid A Badria2

1Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; 2Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516; 3Department of Pharmacognosy, Faculty of Pharmacy, Horus University in Egypt (HUE), New Damietta 34517, Egypt; 4Faculty of Science, Chemistry Department, Biochemistry Division, Mansoura University, Mansoura 35516, Egypt.

For correspondence:-  Fatma Bar   Email: f.abdelbar@psau.edu.sa   Tel:+966545403617

Accepted: 30 August 2021        Published: 30 September 2021

Citation: Bar FM, Habib MM, El-Senduny FF, Badria FA. Cytotoxic activity of silver nanoparticles prepared from Psidium guajava L. (Myrtaceae) and Lawsonia inermis L (Lythraceae) extracts. Trop J Pharm Res 2021; 20(9):1791-1799 doi: 10.4314/tjpr.v20i9.3

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To biosynthesize silver nanoparticles (AgNPs) using Psidium guajava L. and Lawsonia inermis L. leaf extracts, and investigate their antioxidant and cytotoxic activities.
Methods: The aqueous extracts were prepared by maceration in distilled H2O followed by partitioning with EtOAc.  AgNPs were prepared by treating the extracts with 1 mM AgNO3 and then were characterized by UV-vis and FTIR analyses, and transmission electron microscopy (TEM). MTT cytotoxicity and 2,2`-azinobis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) antioxidant assays were used to assess their cytotoxic and antioxidant properties, respectively.
Results: AgNPs from P. guajava and L. inermis extracts exhibited good morphological stability and showed moderate antioxidant activity (68.1 and 71.9%, respectively) compared to their extracts. Equipotent cytotoxicity against HCT-116 and MCF-7 cells was observed for AgNPs derived from P. guajava, while AgNPs derived from L. inermis possessed two-fold cytotoxicity compared to their corresponding extracts. Phytochemical analysis of P. guajava afforded pyrogallol, quercetin, quercetin-3-O-β-xylopyranoside, quercetin-3-O-β-arabinopyranoside, and quercetin-3-O-α-arabinofuranoside, while L. inermis afforded lawsone and luteolin.
Conclusion: Flavonoids and phenolics play a major role in reducing Ag+ ions, surface coating, antioxidant, and cytotoxic activities of AgNPs. The biocompatible AgNPs produced by L. inermis demonstrate promising cytotoxic activity that could contribute to new cancer treatments.

Keywords: Silver nanoparticles, AgNPs, Cytotoxic activity, Psidium guajava, Lawsonia inermis, Phytochemical analysis, Green synthesis

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates