Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

A comparative study of HPLC-DAD and UPLC-UV methods for simultaneous determination of 11 polyphenols in Moringa oleifera leaves

Yanqin Zhu1-3 , Qinhong Yin4, Yaling Yang3

1Research Center for Analysis and Measurement, Kunming University of Science and Technology, China; 2Analysis and Test Center of Yunnan Province, Kunming 650093, China; 3Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; 4Yunnan Police College, Kunming 650223, China.

For correspondence:-  Yanqin Zhu   Email: zyq23788@126.com   Tel:+8687165119674

Accepted: 1 November 2021        Published: 30 November 2021

Citation: Zhu Y, Yin Q, Yang Y. A comparative study of HPLC-DAD and UPLC-UV methods for simultaneous determination of 11 polyphenols in Moringa oleifera leaves. Trop J Pharm Res 2021; 20(11):2371-2379 doi: 10.4314/tjpr.v20i11.20

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To develop, validate and compare two chromatographic methods - high performance liquid chromatography with diode array detector ((HPLC-DAD) and high performance liquid chromatography with ultraviolet detection (UPLC-UV) for the effective analysis of polyphenols in Moringa oleifera leaves.
Methods: HPLC-DAD and UPLC-UV methods were applied for the accurate determination of eleven major polyphenols in Moringa oleifera leaves. The chromatographic conditions of the eleven polyphenols was determined on two C18 column by gradient elution with 0.5 % phosphoric acid solution -acetonitrile as the eluate, and at a flow rate of 1.0 and 0.5 mL/min for HPLC-DAD and UPLC-UV methods, respectively. Detector parameter of UPLC-UV was fixed at 203 nm. The assay methods were validated systematically.
Results: The instrumental methods (HPLC-DAD and UPLC-UV) had good linearity, precision, repeatability and recovery. For both methods, quantification limits of UPLC-UV (0.057 - 0.363 μg/mL) were lower than those of UPLC-UV (0.094 - 1.532 μg/mL). The UPLC method with a shorter running time and more sensitive detection was applied in comparing to the HPLC method. After optimization and evaluation, the baseline of 11 compounds was separated effectively within 68 and 34 min, respectively.
Conclusion: The developed HPLC-DAD and UPLC-UV assays were successfully utilized for the simultaneous analysis of eleven major polyphenols and can readily be utilized as quality control tools for Moringa oleifera leaves in China, with UPLC-UV method showing better separation, lower organic solvent usage and shorter analytical period.

Keywords: Moringa oleifera, Polyphenols, HPLC-DAD, UPLC-UV, Validation

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates