Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Network pharmacology and molecular docking studies on the mechanism of action of moist exposed burn ointment for treatment of diabetic foot ulcer

Yu Zhou1, Yi Li2, Tianqi Zhang3, Ting Luo4, Ying Liu4 , Biaoliang Wu4

1Graduate School of Youjiang Medical University for Nationalities, No. 2, Chengxiang Road, Youjiang District, Baise City, Guangxi Province 533000, China; 2Department of Nursing, Baise City Maternal and Child Health Hospital, No. 4 Xiangyun Road, Youjiang District, Baise City, Guangxi Province 533000, China; 3Guangxi Database Construction and Application Engineering Research Center for Intracorporal Pharmacochemistry of TCM Affiliated Tooujiang Medical University for Nationalities, No. 2, Chengxiang Road, Youjiang District, Baise City, Guangxi Province 533000, China; 4Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities. No. 18, Zhongshan 2 Road, Youjiang District, Baise City, Guangxi Province 533000, China.

For correspondence:-  Ying Liu   Email: Liuyingdr123@outlook.com

Accepted: 2 February 2024        Published: 29 February 2024

Citation: Zhou Y, Li Y, Zhang T, Luo T, Liu Y, Wu B. Network pharmacology and molecular docking studies on the mechanism of action of moist exposed burn ointment for treatment of diabetic foot ulcer. Trop J Pharm Res 2024; 23(2):339-347 doi: 10.4314/tjpr.v23i2.13

© 2024 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the bioactive components and mechanism of action of moist exposed burn ointment (MEBO) for treatment of diabetic foot ulcers using network pharmacology (NP) and molecular docking technology
Methods: Through pharmacology database of traditional Chinese medicine (TCM) systems (TCMSP), analysis platform and symptom mapping (SymMap) database, the bioactive components of MEBO were screened for and protein binding to bioactive components was predicted. Proteins related to Diabetic foot ulcer (DFU) were collected from GeneCards, OMIM, PharmGkb and TTD disease databases. With R language software, the binding proteins of bioactive components of MEBO intersected with the proteins related to occurrence of DFU. Proteins of DFU linked to treatment with MEBO were subjected to analysis using gene ontology (GO) and KEGG with R language software. AutoDock and PyMOL software were employed to dock active components of MEBO and major proteins of DFU. Targeted binding potential of bioactive compounds in MEBO to core proteins of DFU was analyzed.
Results: One hundred and five (105) bioactive ingredients and 246 likely therapeutic proteins were obtained. Proteins were mainly involved in biological processes in wound healing, oxidative stress, and lipopolysaccharide. The enriched signaling pathway focused on lipid metabolism and the process of atherosclerosis which involved PI3K and Akt, advanced glycation end-products (AGE)-receptor (RAGE) and mitogen-activated protein kinase (MAPK). The absolute values of these proteins were screened out with a docking score greater than 5 kcal/mol.
Conclusion: The biological effects of MEBO are related to multiple proteins and multiple signaling pathways. Therefore, healing effect of MEBO on DFU occurs via multiple pathways. The biological characteristics of MEBO need to be fully elucidated in further studies.

Keywords: Moist exposed burn ointment, Diabetic foot ulcer, Network pharmacology, Molecular docking, Proteins

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates