Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Neuroprotective effect of Sargassum thunbergii (Mertens ex Roth) Kuntze in activated murine microglial cells

Sung-Gyu Lee, Hyun Kang

Department of Medical Laboratory Science, College of Science, Dankook University, Cheonan-si, Chungnam, 330-714, Republic of Korea;

For correspondence:-  Hyun Kang   Email: hyunbio@gmail.com, hkang@dankook.ac.kr

Received: 22 October 2014        Revised: 14 January 2015        Published: 28 February 2015

Citation: Lee S, Kang H. Neuroprotective effect of Sargassum thunbergii (Mertens ex Roth) Kuntze in activated murine microglial cells. Trop J Pharm Res 2015; 14(2):235-240 doi: 10.4314/tjpr.v14i2.7

© 2015 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the anti-oxidant and anti-neuroinflammatory effects of the Sargassum thunbergii extract (Mertens ex Roth) Kuntze (STE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells in vitro.
Methods: STE antioxidative activity was evaluated with an Electron Spin Resonance (ESR) spectrometer, which measured 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity. Cell viabilities were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assays. LPS-stimulated BV-2 microglia were used to study the expression and production of inflammatory mediators, such as nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis alpha (TNF-α).
Results: LPS treatment, following STE pretreatment, decreased NO production by 13 ~ 65% in a dose-dependent manner (p < 0.001 at 20, 40, 80 and 100 μg/mL), and was associated with the down-regulation of inducible nitric oxide synthase (iNOS) expression. STE also attenuated the TNF-α soluble protein by 16 ~ 47% (p < 0.01at 20, 40 and 80 μg/mL) in activated murine microglia. Furthermore, the DPPH-generated free radicals were inhibited by STE concentration-dependently.
Conclusion: STE has therapeutic potential in the prevention or treatment of neurodegenerative and oxidative stress-related disorders.

Keywords: Sargassum thunbergii, Neurodegenerative diseases, Anti-inflammatory, Microglial cells, Inducible nitric oxide synthase (iNOS), Tumor necrosis factor (

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates