Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Preparation of resistant sweet potato starch by steam explosion technology using response surface methodology

Guanglei Li , Lingling Pang, Fei Li, Jie Zeng, Junliang Sun

School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China;

For correspondence:-  Guanglei Li   Email: lgl70_hist@163.com   Tel:+863733693693

Received: 17 December 2016        Accepted: 22 April 2017        Published: 30 May 2017

Citation: Li G, Pang L, Li F, Zeng J, Sun J. Preparation of resistant sweet potato starch by steam explosion technology using response surface methodology. Trop J Pharm Res 2017; 16(5):1121-1127 doi: 10.4314/tjpr.v16i5.21

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To obtain the optimal conditions and analyze the structure, gelatinization, and digestion characteristics of resistant sweet potato starch prepared by steam explosion (SE) technology.
Methods: A response surface method was used to investigate the effects of explosion pressure, pressure-holding time and autoclaving time on digestion resistance of sweet potato starch. The resulting resistant sweet potato starch was identified by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and for in vitro starch digestion rate.
Results: The optimum preparation conditions for resistant sweet potato starch were explosion pressure, 2.1 MPa; pressure-holding time, 56 s; and autoclaving time, 26 min. Under these conditions, digestion resistance of sweet potato starch of up to 37.73 ± 0.86 % was obtained. Infra-red spectra indicate that no new chemical groups appeared in the structure of the resistant starch. Furthermore, a gelatinisation-induced endothermic peak was observed in the DSC thermogram of potato starch at about 160 °C. The in vitro digestion data showed that the in vitro digestion rate had undergone a significant decrease.
Conclusion: Sweet potato starch treated by SE and autoclaving has lower digestibility and therefore, can potentially be used in food or medicine for diabetic patients

Keywords: Resistant sweet potato starch, Steam explosion, Digestion resistance, Starch digestion rate, Response surface methodology

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates