Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Effect of compression force, humidity and disintegrant concentration on the disintegration and dissolution of directly compressed furosemide tablets using croscarmellose sodium as disintegrant

Andries F Marais1, Mingna . Song2, Melgardt M de Villiers2

1School of Pharmacy, Potchefstroom University for Christian Higher Education, Potchefstroom 2520, South Africa; 2School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA..

For correspondence:-  Melgardt de Villiers   Email: deviller@ulm.edu

Published: 20 June 2003

Citation: Marais AF, Song M., de Villiers MM. Effect of compression force, humidity and disintegrant concentration on the disintegration and dissolution of directly compressed furosemide tablets using croscarmellose sodium as disintegrant. Trop J Pharm Res 2003; 2(1):125-135 doi: 10.4314/tjpr.v2i1.2

© 2003 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: The effect of compression force, relative humidity and disintegrant concentration on furosemide dissolution in directly compressed furosemide/Avicelâ-tablets was studied.
Methods: Mixtures of furosemide (12.5% w/w), Ac-Di-Solâ (0, 0.625% to 10% w/w) and Avicelâ PH200 (qs to 100% w/w) were prepared in a Turbulaâ mixer at 69 rpm for 10 min. Tablets were stored for 6 months under conditions similar to the four climatic zones recognized by ICH. Tablet hardness, disintegration time and dissolution were measured.
Results: At the same compression force, disintegration time decreased as the disintegrant concentration increased above 0.625% w/w but an increase in compression force resulted in increased tablet crushing strength and apparent density, both of which prolonged the disintegration time. This effect was less significant when the disintegrant concentration was above 1.25%. However, storage under high relative humidity conditions (mediterranean or subtropical, hot and humid climate) caused softening of tablets leading to the spontaneous disintegration of tablets containing high concentrations of Ac-Di-Solâ.
Conclusion: Fast disintegration of tablets within 1-2 min is a prerequisite for improving the dissolution of furosemide. This was attributed to an increase in the speed at which the maximum surface area of the sparingly water-soluble drug is exposed to the dissolution medium. Ac-Di-Solâ was an efficient disintegrant for furosomide tablets at low concentrations of 1.25% - 10% because it rapidly released the hydrophobic drug particles from tablets. However, tablets containing 10 % disintegrant must be protected from atmospheric moisture because storage at 60-70 % relative humidity led to softening of tablets.

Keywords: Disintegration; Furosemide dissolution; Tablets; Compression Force; Relative Humidity; Croscarmellose sodium

Impact Factor
Thompson Reuters (ISI): 0.6 (2023)
H-5 index (Google Scholar): 49 (2023)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates